Adaboost-SVM Multi-Factor Stock Selection Model Based on Adaboost Enhancement
نویسندگان
چکیده
منابع مشابه
AdaBoost with SVM-based component classifiers
The use of SVM (Support Vector Machine) as component classifier in AdaBoost may seem like going against the grain of the Boosting principle since SVM is not an easy classifier to train. Moreover, Wickramaratna et al. [2001. Performance degradation in boosting. In: Proceedings of the Second International Workshop on Multiple Classifier Systems, pp. 11–21] show that AdaBoost with strong component...
متن کاملAdaboost and SVM based cybercrime detection and prevention model
This paper aims to propose cybercrime detection and prevention model by using Support Vector Machine (SVM) and AdaBoost algorithm in order to reduce data damaging due to running of malicious codes. The performance of this model will be evaluated on a Facebook dataset, which includes benign executable and malicious codes. The main objective of this paper is to find the effectiveness of different...
متن کاملResolution Enhancement by AdaBoost
This paper proposes a learning scheme based still image super-resolution reconstruction algorithm. Superresolution reconstruction is proposed as a binary classification problem and can be solved by conditional class probability estimation. Assuming the probability takes the form of additive logistic regression function, AdaBoost algorithm is used to predict the probability. Experiments on face ...
متن کاملLandmark Detection and Recognition based on Adaboost and SVM
This paper proposes a robust real-time artificial landmarks detection and recognition system for indoor mobile robot. First, histograms of oriented gradient (HOG) features are extracted to resolve the illumination changes in indoor environment. Second, AdaBoost based algorithm is used in detection phase to increase the processing speed. Finally, RBF-SVM classifier is used for recognition. Exper...
متن کاملMulti-class AdaBoost
Boosting has been a very successful technique for solving the two-class classification problem. In going from two-class to multi-class classification, most algorithms have been restricted to reducing the multi-class classification problem to multiple two-class problems. In this paper, we develop a new algorithm that directly extends the AdaBoost algorithm to the multi-class case without reducin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Statistics and Probability
سال: 2018
ISSN: 1927-7040,1927-7032
DOI: 10.5539/ijsp.v7n5p9